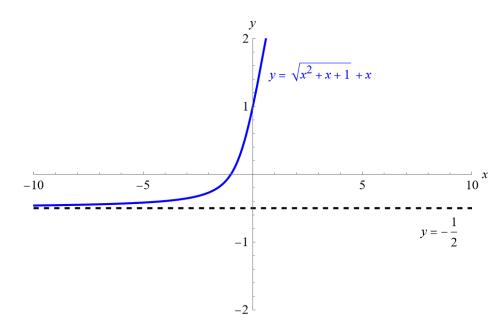
Exercise 45

(a) Estimate the value of

$$\lim_{x \to -\infty} \left(\sqrt{x^2 + x + 1} + x \right)$$


by graphing the function $f(x) = \sqrt{x^2 + x + 1} + x$.

- (b) Use a table of values of f(x) to guess the value of the limit.
- (c) Prove that your guess is correct.

Solution

Part (a)

Graph the function versus x.

Based on the graph, the limit of the function as $x \to -\infty$ is -0.5.

$$\lim_{x \to -\infty} \left(\sqrt{x^2 + x + 1} + x \right) = -\frac{1}{2}$$

Part (b)

Make a table with large negative values of x to see what happens as $x \to -\infty$.

x	f(x)
-1	0
-10	-0.4606
-100	-0.4962
-1000	-0.4996

Part (c)

$$\lim_{x \to -\infty} \left(\sqrt{x^2 + x + 1} + x \right)$$

Start by making the substitution, u = -x. Then as $x \to -\infty$, $u \to \infty$.

$$\lim_{x \to -\infty} \left(\sqrt{x^2 + x + 1} + x \right) = \lim_{u \to \infty} \left[\sqrt{(-u)^2 + (-u) + 1} + (-u) \right]$$
$$= \lim_{u \to \infty} \left(\sqrt{u^2 - u + 1} - u \right)$$
$$= \lim_{u \to \infty} \left(\sqrt{u^2 - u + 1} - u \right) \times \frac{\sqrt{u^2 - u + 1} + u}{\sqrt{u^2 - u + 1} + u}$$
$$= \lim_{u \to \infty} \frac{(u^2 - u + 1) - u^2}{\sqrt{u^2 - u + 1} + u}$$
$$= \lim_{u \to \infty} \frac{-u + 1}{\sqrt{u^2 \left(1 - \frac{1}{u} + \frac{1}{u^2}\right)} + u}$$
$$= \lim_{u \to \infty} \frac{-u + 1}{u \sqrt{1 - \frac{1}{u} + \frac{1}{u^2}} + u}$$
$$= \lim_{u \to \infty} \frac{-u + 1}{u \left(\sqrt{1 - \frac{1}{u} + \frac{1}{u^2}} + 1\right)}$$
$$= \lim_{u \to \infty} \frac{-1 + \frac{1}{u}}{\sqrt{1 - \frac{1}{u} + \frac{1}{u^2}} + 1}$$
$$= \frac{-1 + 0}{\sqrt{1 - 0 + 0} + 1}$$
$$= -\frac{1}{2}$$